Appendices

Common Core State Standards: Progress and Challenges
In School Districts’ Implementation

Appendix 1: Confidence Intervals and Statistical Significance

Many of the tables, figures, and footnotes in the report provide information about whether the difference between estimated percentages is statistically significant. Statistical significance signals whether this difference is likely to be due to chance. If it appears that the difference in estimated percentages is due to chance (i.e., the difference is not statistically significant), then we cannot say that districts are more likely to do one thing than another.

For example, we estimate that 58% of districts in states that have adopted the Common Core State Standards (CCSS) agreed or strongly agreed that the CCSS in math are more rigorous than their state’s previous standards in math, while 22% of these districts disagreed or strongly disagreed. The difference between 58% and 22% is statistically significant, which indicates that the difference is larger than is likely to be explained by chance alone. Therefore, we can say that the percentage of districts in CCSS-adopting states that agree that the CCSS for math are more rigorous than their state’s previous standards is higher than the percentage of districts that disagree. On the other hand, 57% of districts in CCSS-adopting states agreed or strongly agreed that the CCSS in ELA are more rigorous than their state’s previous standards in English language arts (ELA). The difference between the 58% of districts that agreed that the CCSS are more rigorous than their state’s previous standards in math and the 57% of districts in CCSS-adopting states that agreed that the CCSS are more rigorous than their state’s previous standards in ELA is not statistically significant. Therefore, we cannot say that a higher percentage of districts in CCSS-adopting states agreed that the CCSS in math are more rigorous than districts that agreed that the CCSS in ELA are more rigorous than their state’s previous standards.

One method of determining the statistical significance of the difference between two percentages is to compare the confidence intervals of the two percentages. Confidence intervals provide information about the accuracy of the estimated percentages. If the confidence intervals for two percentages do not overlap, then the difference is statistically significant. Exhibit 1 illustrates how ranges of estimated percentages (the confidence intervals) of districts experiencing funding increases or decreases are used to determine statistical significance.
Exhibit 1: Confidence intervals for Figure 1

Percentage of districts in CCSS-adopting states that agreed, disagreed, or were not sure that the CCSS are more rigorous than the previous state standards in math and ELA

Exhibit reads: An estimated 58% of school districts in CCSS-adopting states agreed or strongly agreed that the CCSS in mathematics are more rigorous than the previous state math standards, an estimated 22% disagreed or strongly disagreed, and an estimated 20% were not sure.

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 58 (51, 65); 22 (17, 29); 20 (15, 27); 57 (50, 64); 21 (16, 28); 22 (16, 29). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that agreed or strongly agreed that the CCSS in mathematics are more rigorous than the previous state math standards is between 51% and 65%.

In this case, the bars depicting the confidence interval for the estimated percentage of districts in CCSS-adopting states that agreed that the CCSS in math are more rigorous and the confidence interval for the estimated percentage of districts in CCSS-adopting states that agreed that the CCSS in ELA are more rigorous overlap, indicating that the difference between the two percentages is not statistically significant. Conversely, the bars depicting the confidence interval for the estimated percentage of districts in CCSS-adopting states that agreed that the CCSS in math are more rigorous and the confidence interval for the estimated percentage of districts that disagreed that the CCSS in math are more rigorous do not overlap, indicating that the difference between the percentages is statistically significant.

Appendix 3 provides confidence intervals for all the figures and tables that are reported in the main body of the report.
Appendix 2: Study Methods

This appendix describes the sampling procedures used to select potential districts to participate in the *Center on Education Policy’s District Survey, 2011*. Also described are the methods used to develop and administer the survey and the analytic process used to obtain population estimates from the survey responses. The survey was developed, administered, and analyzed with support from Policy Studies Associates, CEP’s contractor for this project.

SURVEY SAMPLE

We started with the publicly accessible dataset from the 2007-2008 Common Core of Data Local Education Agency Universe Survey conducted by the National Center of Education Statistics (NCES). This dataset contains information on 18,090 elementary and secondary education agencies located in the 50 states and the District of Columbia; American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S. Virgin Islands; the Department of Defense schools; and the Bureau of Indian Education.

From the dataset of 18,090 education agencies, we removed the 4,778 agencies that did not match our study population criteria. Specifically, we removed the agencies that were located outside of the 50 states and the District of Columbia; that were not operating; or that were regional education service agencies, federally and state-operated agencies, charter agencies, or designated as “other education agencies.”

The dataset also included agencies that were component(s) of a supervisory union, sharing a superintendent and administrative services with other local school districts. In these cases, we retained the agency defined as the “supervisory union” and removed the component agencies associated with the unions. We removed the local education agencies (LEAs) that did not directly educate students through the employment of teachers and the operation of school buildings; many of these agencies represented towns that sent their students to neighboring districts or cooperative districts. Finally, we also removed agencies that solely served special segments of the population, such as vocational centers, correctional facilities, schools for the blind or deaf, and schools of performing arts. Exhibit 1 summarizes the edits that we made to the dataset to arrive at our sample frame.
Exhibit 1: Variables Used to Build Sample Frame

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description</th>
<th>Use*</th>
<th>LEAs Subtracted</th>
<th>Unduplicated Deletions**</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIPST</td>
<td>Federal Information Processing Standards (FIPS) state code</td>
<td>Eliminated LEAs from locations outside of the 50 states and the District of Columbia (X>56; n=42)</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>BOUND07</td>
<td>The boundary change indicator is a classification of changes in an education agency’s boundaries since the last report to NCES</td>
<td>Eliminated LEAs that had closed (X=2; n=149), were temporarily closed (X=6; n=35), or were scheduled to be operational in the future (X=7; n=56)</td>
<td>240</td>
<td>282</td>
</tr>
<tr>
<td>TYPE07</td>
<td>Agency type code</td>
<td>Eliminated agencies defined as regional education service agencies (X=4; n=1,203), state-operated agencies (X=5; n=275), federally operated agencies (X=6; n=36), charter agencies (X=7; n=2,126), and other education agencies (X=8; n=195)</td>
<td>3,835</td>
<td>3,925</td>
</tr>
<tr>
<td>UNION07</td>
<td>Indicator linking supervisory units and component agencies</td>
<td>Eliminated agencies that were represented in the dataset by a supervisory union. Eliminated LEAs from CA (n=12), IN (n=3), NH (n=175), NYC (n=34), VT (n=291), and VA (n=2); eliminated supervisory unions from MT (n=56)</td>
<td>573</td>
<td>4,498</td>
</tr>
<tr>
<td>SCH07</td>
<td>Number of schools associated with the agency</td>
<td>Eliminated LEAs that did not directly educate students or that served special populations of students</td>
<td>280</td>
<td>4,778</td>
</tr>
</tbody>
</table>

Exhibit reads: The FIPST variable eliminated LEAs that existed outside the 50 states and the District of Columbia; this variable netted 42 deletions, which brought the total number of unduplicated deletions to 42.

* The X stands for the variable name in each row.

** The unduplicated count is cumulative from top to bottom.

To stratify the sample frame by geographic location and area population density, we used the ULOCAL07 variable in the NCES dataset, which is an indicator of a district’s location relative to a populous area. The NCES dataset contains four main location types, as well as three subtypes with each location type. We used the four main types but not the subtypes in our stratification; in other words, we used the main location type city as a stratum, but we did not create additional strata to distinguish among the subtype locations of large, medium, or small.

Exhibit 2 presents definitions for the main location types, identifies the number of districts in each location type in the sample frame, reports the number of students who attend school in the districts in the sample frame, and identifies the number of districts in each location type that we
We used disproportional stratification in order to include sufficient numbers of each type of district in our survey.

Exhibit 2: Definitions and Frequencies of Sample Strata

<table>
<thead>
<tr>
<th>Location Type</th>
<th>Definition</th>
<th>Number (and percent) of districts in the sample frame</th>
<th>Number (and percent) of K-12 students in the sample frame</th>
<th>Number (and percent) of districts in the sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>Territory inside an urbanized area (a densely settled area that has a census population of at least 50,000 and inside a principal city (the largest city inside the urbanized area)</td>
<td>751 (5.6)</td>
<td>13,447,851 (28.8)</td>
<td>261 (27.3)</td>
</tr>
<tr>
<td>Suburb</td>
<td>Territory inside an urbanized area (a densely settled area that has a census population of at least 50,000 and outside a principal city (the largest city inside the urbanized area)</td>
<td>2,741 (20.6)</td>
<td>18,384,606 (39.4)</td>
<td>234 (24.6)</td>
</tr>
<tr>
<td>Town</td>
<td>Territory inside an urban cluster (a densely settled area that has a census population of 2,500 to 49,999)</td>
<td>2,502 (18.8)</td>
<td>5,904,016 (12.6)</td>
<td>226 (23.7)</td>
</tr>
<tr>
<td>Rural</td>
<td>Territory outside of urbanized areas (densely settled areas that have a census population of at least 50,000 and urban clusters (densely settled areas that have a census population of 2,500 to 49,999)</td>
<td>7,318 (55.0)</td>
<td>8,967,808 (19.2)</td>
<td>234 (24.5)</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>13,312 (100.0)</td>
<td>46,704,281 (100.0)</td>
<td>955 (100.0)</td>
</tr>
</tbody>
</table>

Exhibit reads: Locales defined as “city” consist of 5.6 percent of the districts in the sample frame, contain 28.8 percent of the students who attend the districts in the sample frame, and represent 27.3 percent of the districts sampled for the study.

1 We derived the definitions from U.S. Census Bureau definitions: www.census.gov.

In addition to the four ULOCAL07 location types, we also included a stratification level for districts that belonged to the Council of Great City Schools (CGCS). We sent surveys to all CGCS districts in an effort to include the perspectives of many of the largest school districts in the country. Because of the weighting that we used when we conducted our analyses, the intentional sampling of the CGCS districts does not affect the representativeness of the findings.

SURVEY DEVELOPMENT

The challenge in developing the survey was to strike a reasonable balance between minimizing the response burden and collecting enough data to describe how LEAs are responding to budget
changes and federal and state reforms. The survey included 28 questions across three sections: district fiscal issues, state standards, and district uses of ARRA funds.

In the section on district fiscal issues, the survey included questions for the 2010-11 and 2011-12 school years regarding the status of funding in the district including and excluding ARRA and/or Education Jobs funds; strategies that the district adopted to account for declining budgets, if applicable; and the status of local progress on education reforms. In the section on state standards, the survey included questions on the ways in which local administrators had learned about the Common Core State Standards (CCSS); the extent to which state education agencies had provided technical support on implementing the CCSS at the local level; administrators’ perspectives on the rigor of the CCSS relative to previous standards; strategies that the district was using to implement the CCSS; and challenges that the district was facing as a part of the CCSS implementation process. In the section on district uses of ARRA funds, the survey included questions regarding the use of ARRA SIG funds, ARRA Title I funds, and ARRA IDEA funds in the district.

As part of survey development, we sent a draft of the instrument to central office administrators in LEAs in three states. We asked the administrators to review the instrument and provide feedback on the appropriateness and clarity of the wording and on the focus of the survey questions. We also asked them to estimate the amount of time required to complete the survey and to indicate who else in their districts might be involved in responding to individual items. The final version of the survey reflects the feedback that we received.

SURVEY ADMINISTRATION

In February 2011, CEP contacted the superintendents of the districts in the sample to explain the purpose of the survey and to provide background information on CEP and its previous reports and research on state- and district-level implementation of ARRA. A week later, we sent the survey to the local superintendents. One week after the print version of the survey arrived in the districts, we sent an electronic version of the survey to the superintendents via email. We sent a reminder postcard a few days after distribution of the email. Two weeks later we sent a reminder email. One week after the reminder email, we mailed another copy of the print survey to the superintendents.

Districts returned surveys between the end of February and the beginning of May 2011. We received completed responses from 457 of the 955 districts in our sample; this corresponds to a response rate of 48 percent. Given our previous work with school districts and understanding of the current climate of data requests from districts, we anticipated a 50-percent response rate at the outset of the survey. If we assume that district non-response occurred at random, then the response rate does not affect the representativeness of the survey findings.

DATA ANALYSES

To obtain the population estimates from the sample responses, we multiplied each sample response by a weighting factor specific to that particular stratum and question. The weighting factors were stratum-specific because the proportion of districts included in the sample from
each stratum was not equal (i.e., we used a disproportional stratified sample). The weighting
variables were also question-specific because we dealt with missing responses by eliminating the
cases from the set of responses used in the analysis. This approach to treating missing data has
the advantage of simplifying the reporting of results; it has the disadvantage of increasing the
estimated standard errors.

We calculated both the standard error and confidence interval for each of the estimated response
frequencies presented in the report that describes the survey findings. The estimated standard
error of a proportion provides information about the accuracy of the percentage estimate. The
size of the standard error is influenced by the distribution of responses, the number of
respondents, and the size of the population. Estimated standard errors are used to construct
confidence intervals for the estimated percent. The confidence interval for a proportion indicates
the degree of certainty that the true value for the population of all districts in the nation is
included in a particular range. For proportions, the confidence interval is not symmetric relative
to the estimated percent (except in the case where the estimated percent equals 50); this is
because a proportion has a lower and upper bound (0 and 1, respectively), and the boundary
affects the calculation of the interval. Additional information about the confidence intervals for
specific responses is available in Appendix 3 accompanying the report.

After we drew our survey sample from the sample frame, we discovered that a number of
districts that were listed in the Common Core of Data as being operational were, in fact, no
longer operating. Because we drew the sample randomly, we could estimate the total number of
districts in the Common Core of Data that were listed as open but that were closed; this estimate
was 572 districts. We subtracted these districts from the denominator in our analyses. That is,
we estimate the size of the sample frame to be 12,740 districts.
Appendix 3:
Confidence Intervals for Survey Responses
Exhibit 1: Confidence intervals for Figure 1

Percentage of districts in CCSS-adopting states that agreed, disagreed, or were not sure that the CCSS are more rigorous than the previous state standards in math and ELA

Exhibit reads: An estimated 58% of school districts in CCSS-adopting states agreed or strongly agreed that the CCSS in mathematics are more rigorous than the previous state math standards, an estimated 22% disagreed or strongly disagreed, and an estimated 20% were not sure.

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 58 (51, 65); 22 (17, 29); 20 (15, 27); 57 (50, 64); 21 (16, 28); 22 (16, 29). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that agreed or strongly agreed that the CCSS in mathematics are more rigorous than the previous state math standards is between 51% and 65%.

Exhibit 2: Confidence intervals for Figure 2

Percentage of districts in CCSS-adopting states that agreed, disagreed, or were not sure that implementation of the CCSS will improve skills among students in the district in math and ELA

Exhibit reads: An estimated 55% of school districts in CCSS-adopting states agreed or strongly agreed that implementation of the CCSS in mathematics will lead to improved math skills among students in the district, an estimated 15% disagreed or strongly disagreed, and an estimated 30% were not sure.

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 55 (48, 62); 15 (11, 21); 30 (23, 37); 58 (51, 65); 13 (9, 19); 29 (23, 36). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that agreed or strongly agreed that implementation of the CCSS in mathematics will lead to improved math skills among students in the district is between 48% and 62%.
states that agreed or strongly agreed that implementation of the CCSS in mathematics will lead to improved math skills among students in the district is between 48% and 62%.

Exhibit 3: Confidence intervals for Figure 3

Percentage of districts in CCSS-adopting states that agreed, disagreed, or were not sure that the implementation of the CCSS will require new or substantially revised curriculum materials in math and ELA

<table>
<thead>
<tr>
<th></th>
<th>Percent of LEAs in CCSS-adopting states</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation of the CCSS will require new or substantially revised curriculum materials in mathematics</td>
<td>64% (56, 70); 16 (12, 22); 20 (15, 27); 56 (48, 63); 22 (17, 28); 23 (17, 30)</td>
</tr>
<tr>
<td>Implementation of the CCSS will require new or substantially revised curriculum materials in reading/english language arts</td>
<td>48% (40, 56); 21 (16, 28); 50 (43, 57); 27 (22, 34); 22 (17, 29)</td>
</tr>
</tbody>
</table>

Exhibit 4: Confidence intervals for Figure 4

Percentage of districts in CCSS-adopting states that agreed, disagreed, or were not sure that the CCSS will require fundamental changes in instruction in math and ELA

<table>
<thead>
<tr>
<th></th>
<th>Percent of LEAs in CCSS-adopting states</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation of the CCSS will require fundamental changes in mathematics instruction in this district</td>
<td>50% (43, 57); 29 (23, 36); 21 (16, 28); 50 (43, 57); 27 (22, 34); 22 (17, 29)</td>
</tr>
<tr>
<td>Implementation of the CCSS will require fundamental changes in reading/english language arts instruction in this district</td>
<td>29% (23, 36); 22 (17, 29)</td>
</tr>
</tbody>
</table>

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 50 (43, 57); 29 (23, 36); 21 (16, 28); 50 (43, 57); 27 (22, 34); 22 (17, 29). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that agreed or strongly agreed that implementation of the CCSS in mathematics will require new or substantially revised curriculum materials is between 56% and 70%.
states that agreed or strongly agreed that implementation of the CCSS in mathematics will require fundamental changes in instruction is between 43% and 57%.

Exhibit 5: Confidence intervals for Table 1

Percentage of districts in CCSS-adopting states that had begun to implement or planned to implement various activities related to the CCSS in school years 2010-11 and/or 2011-12

<table>
<thead>
<tr>
<th>Activity</th>
<th>Percentage</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop and/or purchase new curriculum materials aligned with the CCSS</td>
<td>55%</td>
<td>47% - 62%</td>
</tr>
<tr>
<td>Develop new local assessments to measure student mastery of the CCSS</td>
<td>48%</td>
<td>45% - 51%</td>
</tr>
<tr>
<td>Provide some professional development on the CCSS in a specific subject to teachers who teach that subject</td>
<td>47%</td>
<td>45% - 50%</td>
</tr>
<tr>
<td>Assign resource teachers to assist teachers in integrating the CCSS in classroom instruction</td>
<td>29%</td>
<td>27% - 32%</td>
</tr>
<tr>
<td>Develop a comprehensive plan and timeline for implementing the CCSS</td>
<td>66%</td>
<td>66% - 73%</td>
</tr>
<tr>
<td>Develop a teacher evaluation system to hold teachers accountable for student mastery of the CCSS</td>
<td>30%</td>
<td>29% - 33%</td>
</tr>
<tr>
<td>Align content of educator induction programs with the CCSS</td>
<td>27%</td>
<td>25% - 30%</td>
</tr>
</tbody>
</table>

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 55 (47, 62); 53 (46, 60); 48 (40, 55); 45 (38, 52); 47 (40, 54); 45 (38, 53); 29 (22, 36); 29 (23, 36); 66 (59, 73); 30 (23, 37); 27 (21, 34). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that had developed and/or purchased new curriculum materials aligned with the CCSS in math in school year 2010-11 or planned to do so in school year 2011-12 is between 47% and 62%.
Exhibit 6: Confidence intervals for text on Page 5

Percentage of districts in CCSS-adopting states that had one or more activities for district implementation of the CCSS underway or planned for 2010-11 and/or 2011-12

Exhibit reads: An estimated 80% of school districts in CCSS-adopting states had one or more activities for district implementation of the CCSS underway or planned for school year 2010-11 and/or 2011-12, while an estimated 20% of these districts had no activities for district implementation of the CCSS underway or planned for either year.

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 80 (73, 85); 20 (15, 27). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that had one or more activities underway or planned for 2010-11 and/or 2011-12 is between 73% and 85%.

Exhibit 7: Confidence intervals for text on Page 6

Upper and lower bound percentages of districts in CCSS-adopting states that did not implement or plan to implement specific activities in 2010-11 and did not plan to in 2011-12 or said it was too soon to tell

Exhibit reads: The estimated percentages of school districts in CCSS-adopting states that did not implement or plan to implement specific activities in 2010-11 and did not plan to or said it was too soon to tell about 2011-12 ranged from 34% to 77%. An estimated 34% of these districts did not have the development of a comprehensive plan and timeline for implementing the CCSS underway or planned for 2010-11 and 2011-12 or said it was too soon to tell, while an estimated 77% had nothing underway, planned, or said it was too soon to tell about purchasing new curriculum materials aligned with the CCSS in ELA.

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 34 (27, 41); 77 (71, 83). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that did not have the development
of a comprehensive plan and timeline for implementing the CCSS underway or planned for 2010-11 and 2011-12 or said it was too soon to tell is between 27% and 41%.

Exhibit 8: Confidence intervals for text on Page 7

Percentage of districts in CCSS-adopting states that have begun or plan to take action to develop and/or purchase new curriculum materials aligned with the CCSS in math and/or ELA

Exhibit reads: An estimated 61% of school districts in CCSS-adopting states had developed and/or purchased new curriculum materials aligned with the CCSS in math and/or ELA in school year 2010-11 or planned to do so in school year 2011-12.

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 61 (54, 68); 55 (47, 62); 53 (46, 60); 46 (38, 53); 47 (40, 55); 22 (17, 29); 20 (14, 26). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that have begun or plan to take actions to develop and/or purchase new curriculum materials aligned with the CCSS in math and/or ELA is between 54% and 68%.

Percentage of districts in CCSS-adopting states that have provided or plan to provide professional development on the CCSS for teachers who teach math and/or ELA

Exhibit reads: An estimated 48% of school districts in CCSS-adopting states have provided or plan to provide professional development on the CCSS for teachers who teach math and/or ELA in school year 2010-11 and/or 2011-12.

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 48 (41, 55); 47 (40, 54); 45 (38, 53); 53 (46, 60); 55 (47, 62); 32 (25, 39); 32 (25, 39). This means, for example, that we are 95% certain that the actual percentage of districts in
CCSS-adopting states have provided or planned to provide professional development on the CCSS for teachers who teach math and/or ELA is between 41% and 55%.

Exhibit 9: Confidence intervals for Table 2

Percentage of districts in CCSS-adopting states that cited inadequate or unclear guidance from the SEA as a major, minor, or no challenge

Exhibit reads: An estimated 63% of school districts in CCSS-adopting states cited inadequate or unclear state guidance in modifying teacher evaluation systems, creating local assessments, and/or aligning the content of educator induction programs as a major challenge.

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 63 (56, 70); 53 (46, 60); 35 (28, 42); 12 (8, 17); 48 (41, 55); 41 (34, 48); 11 (8, 16); 45 (38, 52); 42 (35, 50); 13 (9, 18). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that cited inadequate or unclear state guidance in modifying teacher evaluation systems, creating local assessments, and/or aligning the content of educator induction programs as a major challenge is between 56% and 70%.

Percentage of districts in CCSS-adopting states that cited other inadequacies as a major, minor, or no challenge

Exhibit reads: For an estimated 76% of school districts in CCSS-adopting states, inadequate funds to carry out all aspects of implementing the CCSS was a major challenge, while it was a minor challenge for an estimated 21%, and not a challenge for an estimated 4%.

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 76 (69, 81); 21 (16, 28); 4 (2, 7); 40 (33, 47); 47 (40, 55); 13 (9, 18); 47 (39, 54); 42 (35, 49); 12 (8, 17). This means, for example, that we are 95% certain that the actual
percentage of districts in CCSS-adopting states that cited inadequate funds to carry out all aspects of implementing the CCSS as a major challenge is between 69% and 81%.

Exhibit 9: Confidence intervals for Table 2 (continued)

Percentage of districts in CCSS-adopting states that cited resistance to implementing the CCSS as a major, minor, not a challenge

![Confidence intervals for Table 2](image)

- Resistance to implementing the CCSS from teachers and principals:
 - Major challenge: 10%
 - Minor challenge: 32%
 - Not a challenge: 58%

- Resistance to implementing the CCSS from parents and community members:
 - Major challenge: 5%
 - Minor challenge: 35%
 - Not a challenge: 60%

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 10 (7, 15); 58 (51, 65); 32 (26, 39); 5 (2, 9); 35 (29, 43); 60 (53, 67). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that cited resistance to implementing the CCSS from teachers and principals as a major challenge is between 7% and 15%.

Exhibit 10: Confidence intervals for Table 3

Percentage of districts in CCSS-adopting states in which some district staff participated in opportunities to learn about the CCSS in school year 2010-11

![Confidence intervals for Table 3](image)

- State and/or regional meetings to introduce the CCSS: 88%
- State and/or regional meetings to plan the implementation of the CCSS: 63%
- State and/or regional professional development to increase understanding of the CCSS and its implications for instruction: 62%
- District meetings to introduce the CCSS: 72%
- District meetings to plan the implementation of the CCSS: 54%
- District professional development to increase understanding of the CCSS and its implications for instruction: 61%

Notes: Weighted estimates are significantly different (p<0.05) if their confidence interval bars do not overlap.

Exhibit reads: In an estimated 88% of districts in CCSS-adopting states, central office staff, principals, and/or teachers attended state and/or regional meetings to introduce the CCSS.
Notes: The 95% confidence intervals for the estimates in the figure are as follows: 88 (83, 92); 63 (56, 70); 62 (55, 69); 72 (65, 78); 61 (53, 68); 54 (46, 61). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that had some staff attend state or regional meetings to introduce the CCSS is between 83% and 92%.

Exhibit 11: Confidence intervals for text on Page 10

Percentage of districts in CCSS-adopting states in which district staff, principals, and teachers participated in state opportunities to learn about the CCSS in school year 2010-11

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 81 (74, 86); 46 (39, 53); 68 (61, 74); 56 (49, 63); 33 (27, 40); 46 (39, 53); 55 (48, 62); 37 (30, 44); 44 (37, 51). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that had central office staff attend state or regional meetings to introduce the CCSS is between 74% and 86%.

Percentage of districts in CCSS-adopting states in which district staff, principals, and teachers participated in district opportunities to learn about the CCSS in school year 2010-11

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 62 (55, 69); 60 (53, 67); 67 (60, 73); 54 (47, 61); 48 (41, 55); 52 (45, 59); 48 (41, 55); 46 (39, 53); 50 (43, 57). This means, for example, that we are 95% certain that the actual...
percentage of districts in CCSS-adopting states that had central office staff attend district meetings to introduce the CCSS is between 55% and 69%.

Exhibit 12: Confidence intervals for Table 4

Percentage of districts in CCSS-adopting states receiving various types of support from their state education agency to assist with district implementation of the CCSS for school year 2011-12

<table>
<thead>
<tr>
<th>Support Type</th>
<th>Estimate (%)</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disseminate a comprehensive plan for statewide implementation of the CCSS</td>
<td>51</td>
<td>(44, 58)</td>
</tr>
<tr>
<td>Provide guidance and/or models for the development of local assessments aligned with the CCSS</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Disseminate new curriculum materials aligned with the CCSS</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Require districts to develop plans to implement the CCSS</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Provide guidance and/or models for the design of local educator evaluation systems aligned with the CCSS</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Provide guidance and/or models for the design of local educator induction programs aligned with the CCSS</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Exhibit reads: An estimated 51% of districts in CCSS-adopting states had received a comprehensive plan for statewide implementation of the CCSS from their state education agency.

Notes: The 95% confidence intervals for the estimates in the figure are as follows: 51 (44, 58); 38 (31, 45); 34 (27, 41); 32 (25, 39); 29 (23, 36); 28 (22, 35). This means, for example, that we are 95% certain that the actual percentage of districts in CCSS-adopting states that had received a comprehensive plan for statewide implementation of the CCSS from their state education agency is between 44% and 58%.